
RACE

SSC CHSL - CHT1 : 180346 GRAND TEST HINTS AND SOLUTIONS

ANSWER KEY

1	(1)	26	(3)	51	(3)	76	(3)
2	(3)	27	(2)	52	(2)	77	(4)
3	(3)	28	(1)	53	(3)	78	(1)
4	(4)	29	(4)	54	(1)	79	(1)
5	(4)	30	(2)	55	(1)	80	(1)
6	(2)	31	(3)	56	(1)	81	(1)
7	(2)	32	(3)	57	(2)	82	(3)
8	(1)	33	(3)	58	(3)	83	(4)
9	(3)	34	(2)	59	(3)	84	(1)
10	(2)	35	(4)	60	(4)	85	(3)
11	(3)	36	(4)	61	(1)	86	(1)
12	(2)	37	(3)	62	(3)	87	(1)
13	(1)	38	(1)	63	(1)	88	(1)
14	(2)	39	(3)	64	(3)	89	(1)
15	(2)	40	(2)	65	(4)	90	(2)
16	(3)	41	(1)	66	(4)	91	(1)
17	(2)	42	(2)	67	(4)	92	(1)
18	(1)	43	(4)	68	(4)	93	(1)
19	(2)	44	(1)	69	(3)	94	(2)
20	(2)	45	(1)	70	(4)	95	(2)
21	(3)	46	(1)	71	(3)	96	(1)
22	(2)	47	(3)	72	(3)	97	(1)
23	(2)	48	(2)	73	(3)	98	(2)
24	(4)	49	(2)	74	(4)	99	(3)
25	(3)	50	(1)	75	(4)	100	(4)

- 1. (1) $22:22^2+22:27:27^2+27$ $\downarrow \downarrow$ 506 756
- 2. (3) Stethoscope is an instrument used by doctor, Similarly, chisel is used by sculptor.

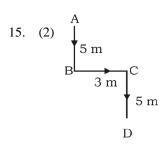
- 4. (4) River contains flowing water. Similarly, pool contains stagnant water.
- 6. (2) All except Argentina are continents, while Argentina is a country.
- 7. (2)

1

8. (1) Each of the numbers except 48, is one more than the square of a certain number.

10. (2)
$$2187 \times \frac{1}{3} = 729$$
; $729 \times \frac{1}{3} = 243$;

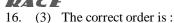
$$243 \times \frac{1}{3} = 81; 81 \times \frac{1}{3} = 27$$


$$27 \times \frac{1}{3} = 9$$
; $9 \times \frac{1}{3} = 3$

11. (3) The sequence in first column is multiplied by 5. Thus, $1 \times 5 = 5$, $5 \times 5 = 25$, $25 \times 5 = 125$ The sequence in third column is multiplied by 2. Thus, $7 \times 2 = 14$, $14 \times 2 = 28$, $28 \times 2 = 56$ The sequence in second column is multiplied by 4. \therefore Missing number = $12 \times 4 = 48$

12. (2)
$$6 + (2)^2 = 10$$

 $10 + (3)^2 = 19$
 $19 + (4)^2 = 35$.


13. (1) The correct sequence is 5², 7², 9², 11², 13² and 15². So, 36 is wrong.

14. (2)
$$12 \div 2 + 9 - 4 = ?$$

 $6 + 9 - 4 = ?$
 $15 - 4 = ?$
 $\therefore ? = 11$

Hence X will face in the end towards South.

Arrival	Introduction	Presentation	
(3)	(5)	(1)	
Discussion	Recomm	endation	
(4)	(2)		

- 17. (2) When Rahul was born, his brother's age = 6 years His father's age = (6 + 32) years = 38 years His mother's age = (38 - 3) years = 35 years His sister's age = (35 - 25) years = 10 years.
- 18. (1) All the number in the given set are prime numbers. Here, 5 is also a prime number and it belongs to the same group.
- 19. (2) B > A > E, C > B, B > D > A, C > B > D > A > E
- 20. (2) If 26th August in a year is Thursday. Hence, next Sunday is on 29th August. Hence total number of Sunday is 29, 22, 15, 8, 1.
- 21. (3) Using the correct symbols, we have : Given expression

$$= 26 \times 74 \div 5 + 2 = 26 \times \frac{37}{2} - 5 + 2$$
$$= 13 \times 37 - 5 + 2 = 481 - 5 + 2 = 478$$

- 22. (2)
- 23. (2)
- 24. (4)
- 25. (3)

51. (3)
$$\sqrt{\frac{\sqrt{36} - \sqrt{24} + \sqrt{24} - \sqrt{16}}{5 + \sqrt{24}}}$$

$$= \sqrt{\frac{6 - 4}{5 + \sqrt{24}}} = \sqrt{\frac{2}{5 + \sqrt{24}}} = \sqrt{\frac{2}{5 + \sqrt{6} \times 4}}$$

$$= \sqrt{\frac{2}{5 + 2\sqrt{6}}} = \sqrt{\frac{2}{5 + 2\sqrt{6}}} \times \frac{5 - 2\sqrt{6}}{5 - 2\sqrt{6}}$$

$$= \sqrt{\frac{2(5 - 2\sqrt{6})}{25 - 24}} = \sqrt{2(5 - 2\sqrt{6})}$$

$$= \sqrt{2[(\sqrt{3})^2 + (\sqrt{2})^2 - 2\sqrt{3}\sqrt{2}]}$$

$$= \sqrt{2(\sqrt{3} - \sqrt{2})^2} = \sqrt{2}(\sqrt{3} - \sqrt{2}) = \sqrt{6} - 2$$
52. (2) Men to be arranged = $(6000 - 71) = 5929$

- 52. (2) Men to be arranged = (6000 71) = 5929Number of men arranged in each row = $\sqrt[2]{5929} = 77$
- 53. (3) Minimum pass marks = 50% $50\% \rightarrow = 163 + 37$ = 200

Maximum marks in exam.

 $100 \rightarrow 400$

54. (1) L.C.M. of 18, 36, 45 and 60 = 180

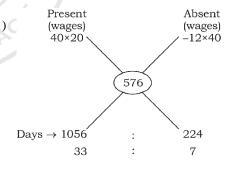
Now,
$$\frac{17}{18} = \frac{17 \times 10}{18 \times 10} = \frac{170}{180}$$

$$\frac{31}{36} = \frac{31 \times 5}{36 \times 5} = \frac{155}{180}$$

$$\frac{43}{45} = \frac{43 \times 4}{45 \times 4} = \frac{172}{180}$$

$$\frac{59}{60} = \frac{59 \times 3}{60 \times 3} = \frac{177}{180}$$

Since, 155 < 170 < 172 < 177,


So,
$$\frac{155}{180} < \frac{170}{180} < \frac{172}{180} < \frac{177}{180}$$

Hence,
$$\frac{31}{36} < \frac{17}{18} < \frac{43}{45} < \frac{59}{60}$$

55. (1) Let the SP of 10 article = 1 = CP of 11 article

Gain =
$$\frac{1}{10} - \frac{1}{11} = \frac{11 - 10}{110} = \frac{1}{110}$$

Gain % =
$$\frac{1}{110} \times \frac{100}{\frac{1}{11}} = 10\%$$

Number of days in which he was absent

$$=\frac{40}{(33+7)} \times 7 = 7$$
 days

57. (2) $\sqrt{7} - \sqrt{5}$, $\sqrt{5} - \sqrt{3}$, $\sqrt{9} - \sqrt{7}$, $\sqrt{11} - \sqrt{9}$ On rationalizing each term

$$=\frac{2}{\sqrt{7}-\sqrt{5}},\frac{2}{\sqrt{5}-\sqrt{3}},\frac{2}{\sqrt{9}-\sqrt{7}},\frac{2}{\sqrt{11}-\sqrt{9}}$$

Smallest denominator = $\sqrt{5} + \sqrt{3}$

So largest value = $\sqrt{5} - \sqrt{3}$

58. (3)
$$2\frac{1}{2}\% = \frac{1}{40}$$

Initial v	value	New	value
40		4	41
40		4	41
40		4	41
64000) :	68	921

- Hence the population of the town after 3 years = 68,921
- 59. (3) Since the sum of any two sides of a triangle is greater than the 3rd side.
 - 2 + 3 > 5, which is wrong.
 - 2 + 3 > 6, which is wrong.
 - \therefore (2, 3, 5) or (2, 3, 6) will not form a triangle.

Triplets (3, 5, 6) and (2, 5, 6) are true for the sides of a triangle = 2 triangles.

60. (4) Let the total number of voters be x.

Number of votes cast in the election =
$$\frac{92}{100}$$
 x

Number of votes obtained by winner = $\frac{48}{100}$ x

Number of votes obtained by the defeated candidate

$$=\frac{(92-48)}{100}\,\mathbf{x} = \frac{44}{100}\,\mathbf{x}$$

From question, $\frac{48x}{100} - \frac{44x}{100} = 1100$

$$\Rightarrow$$
 4x = 110000 \Rightarrow x = 27500

Total number of voters = 27,500.

61. (1) Old Ratio =
$$\frac{1}{4} : \frac{1}{5} : \frac{1}{6}$$

$$=\frac{1}{4}\times60:\frac{1}{5}\times60:\frac{1}{6}\times60=15:12:10$$

Amount of C =
$$\frac{10}{15+12+10} \times 555$$

$$=\frac{10}{37}\times555=150$$

New ratio = 4:5:6

New Amount of C =
$$\frac{6}{15} \times 555 = 6 \times 37 = 222$$

Required Excess Amount = \(^(222-150)) = \(^72)

- 62. (3) LCM of 9, 10 and 15 = 90
 - \Rightarrow The multiple of 90 are also divisible by 9, 10 or 15.
 - \therefore 21 × 90 = 1890 will be divisible by them.
 - ∴ Now, 1897 will be the number that will give remainder 7.

1936 - 1897

Required number = 1936 - 1897 = 39

63. (1) I no.
$$\times$$
 II no. $=$ L.C.M. \times H.C.F.

$$(x^2 + 2x - 3) \times P = (x^3 + 7x + 6) \times (x + 3)$$

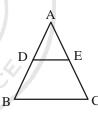
$$\Rightarrow P = \frac{(x^2 + 7x + 6)(x + 3)}{x^2 + 2x - 3}$$

$$\Rightarrow$$
 P = (x + 3)(x - 2) = $x^2 + x - 6$

64. (3) Sum of 8 numbers =
$$20 \times 8 = 160$$

$$\left(15\frac{1}{2}\right) \times 2 + \left(21\frac{1}{3}\right) \times 3 + x + x + 4 + x + 7 = 160$$

$$\Rightarrow$$
 31+64+3x+11=160 \Rightarrow 3x = 160-106


$$\Rightarrow x = \frac{54}{3} \Rightarrow x = 18$$

8th number = x + 7 = 18 + 7 = 25

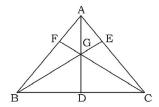
65. (4) Let the third proportional to (x 2 - y 2) and (x - y) be

$$(x^2 - y^2) : (x - y) :: (x - y) : z$$

 $\Rightarrow (x^2 - y^2) \times z = (x - y)^2$

$$\Rightarrow z = \frac{(x-y)^2}{(x^2 - y^2)} = \frac{(x-y)}{(x+y)}$$

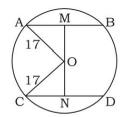
Since \triangle ADE and \triangle ABC are similar


$$\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(ABC)} = \left| \frac{AD}{AB} \right| \Rightarrow \sqrt{\frac{1}{2}} = \frac{AD}{AB}$$

$$\Rightarrow \frac{AD}{AB} = \sqrt{\frac{1}{2}} \Rightarrow \frac{AD}{BD} = \frac{1}{\sqrt{2} - 1}$$

67. (4) We know that the centroid of a triangle divides each median in the ratio of 2:1

 \therefore BG : BE = 2 : 3


$$\Rightarrow$$
 BE = $\frac{3}{2}$ BG = $\frac{3}{2}$ × 6 = 9 cm

68. (4) MN = 23 cm

ACE

$$AM = MB = \frac{16}{2} = 8 \text{ cm}$$

∴ In ∆AMO,

$$(OM)^2 = (17)^2 - (8)^2$$

$$\therefore$$
 OM = 15 cm

$$\therefore$$
 ON = 23 – 15 = 8 cm

In \triangle ONC,

$$(CN)^2 = (17)^2 - (8)^2 \Rightarrow CN = 15 \text{ cm}$$

$$\therefore$$
 CD = 2CN = 30 cm

69. (3) According to the question, let the number are a and b.

$$(a-b): (a+b): ab = 1:7:24$$

Numbers are a = 8, b = 6

So product = $8 \times 6 = 48$

70. (4) Given,

Total earning of A + B + C = 760000

Percentage of their saving are 30%, 25% and 20% respectively.

...(1)

Let, savings of A, B and C be 4x, 5x and 6x respectively.

Now, 30% of A = 4x

or,
$$30 \times \frac{A}{100} = 4x \Rightarrow A = \frac{40}{3}x$$
 ...(2)

Also, 25% of B = 5x

Or,
$$25 \times \frac{B}{100} = 5x \Rightarrow B = 20x$$
 ...(3)

SSC CHSL : TIER-1

Also, 20% of C = 6x

4

Or,
$$20 \times \frac{C}{100} = 6x \Rightarrow C = 30x$$
 ...(4)

On using (2), (3) and (4) in (1), we get

$$\frac{40x}{3} + 20x + 30x = 76000 \Rightarrow x = 1200$$

$$\therefore A = \frac{40x}{3} = \frac{40}{3} \times 1200 = 16000$$

$$B = 20x = 20 \times 1200 = 24000$$

$$C = 30x = 30 \times 1200 = 36000$$

$$\therefore$$
 (A + B) – C = (16000 + 24000) – 36000 = Rs.4000.

- 71. (3) Required number of students passed in third division = 70
- 72. (3) Percentage of students failed in 1984

$$=\frac{35}{200}\times100=17\frac{1}{2}\%$$

73. (3) Total passed students = 140 + 150 + 165 = 455Total students = 170 + 195 + 200 = 565

:. Required percentage

$$=\frac{465}{565}\times100=\frac{9100}{113}=80\frac{60}{113}\%$$

74. (4) Required percentage = $\frac{20}{170} \times 100 = \frac{200}{17} = 11\frac{13}{17}\%$

75. (4) Required percentage =
$$\frac{140}{170} \times 100 = \frac{1400}{17} = 82 \frac{6}{17} \%$$